Geothermal energy in private homes

Presentation for
"Energy and the Environment"
Nov. 29th 2011
by
Kira Quint and Oliver Ricken

Source: erdwaerme-info.de

Outline

- Introduction and motivation
- Heat
 - Generation
 - Distribution and mechanisms of transport
- Usage and applications of geothermal energy
 - Accessing geothermal sources
 - Industrial use
- Geothermal energy in private homes
- Risks

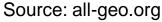
Introduction and motivation

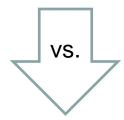
What is geothermal energy?

Generated by earth itself Thermal energy in form of heat

- Motivation to use it:
 - Renewable
 - No (to few in total balance) emissions
 - (Nearly) everywhere accessible

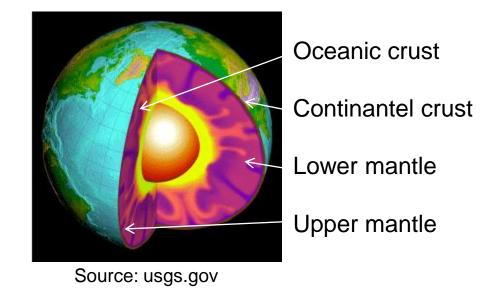
Introduction and motivation (2)


Average heat flux through earth's surface: $87 \frac{mW}{2}$



Total energy for the earth:

$$4.4 \times 10^{13} W$$



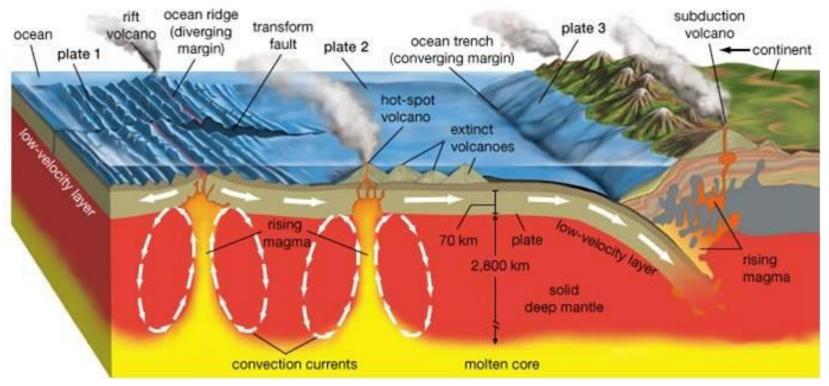
Total energy consumption estimated for 2006:

$$1.57 \times 10^{13} W$$

Heat flow - Generation

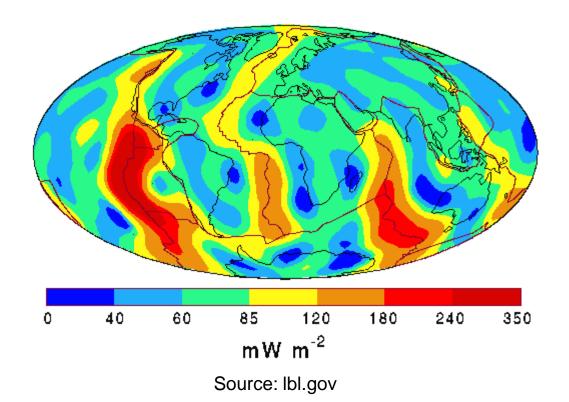
- Remnant heat from formation of the core
- heat from decay of long-lived radioactive isotopes
- Plate tectonics (friction)
- Exothermal reactions

Generation of heat – Formation of the core

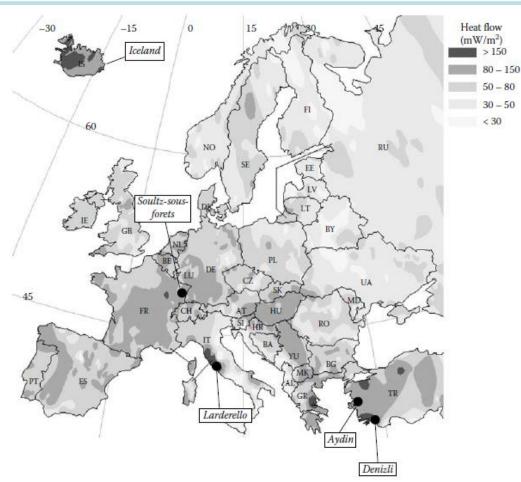

- Long-lived Radioactive isotopes
 - Decay

(e.g.
$$^{53}Mn_{t1/2} = 3.7 \times 10^6 a$$
)

- Collisions of decay products with atoms
- Molten iron migrating to the center
 - forming its liquid core
 - releasing gravitational potential energy
- Core slowly cooling down forming
 - solid inner core
 - liquid outer core


Heat is generated (ca. 40% of g.e. used heat)

Generation/distribution of heat – Plate tectonics

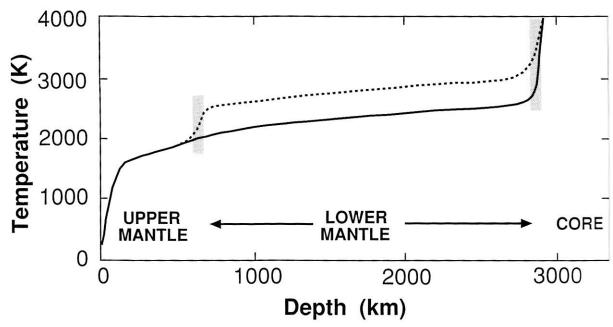


Source: V. Rufus, M. Hansen, N. Strotjohann

Distribution of heat flow – Global heat flow

Distribution of heat flow - Europe

Source: W. E. Glassley, Geothermal Energy, 2010


Transport of heat — Theory

$$\frac{\partial T}{\partial t} = \frac{k}{\rho c_p} \nabla^2 T + \frac{A}{\rho c_p} - \vec{u} \cdot \vec{\nabla} T$$

$$0 = \frac{k}{\rho c_p} \frac{\partial^2 T}{\partial z^2} + \frac{A}{\rho c_p}$$

$$Q = -k \frac{\partial T}{\partial z} = Az + Q_0$$

Transport of heat - Temperature profile

Source: C.M.R. Fowler, The solid earth, 2005

Heat Storage inside the earth

Table 5.4 Estimated U.S. Geothermal Resources^a

Reservoir Type	Total Resource (QBtu)	Total Potentially Producible (QBtu)
Hot water	12,000	6,000
Natural steam	180	45
Geopressured	73,000	2,400
Normal gradient	1,250,000	12,500
Hot dry rock	160,000	1,600
Molten magma	3,500	35
Total	1,500,000	22,600

 $[^]a$ To 6,000 meter depth, T ≥ 80°C, national parks excluded.

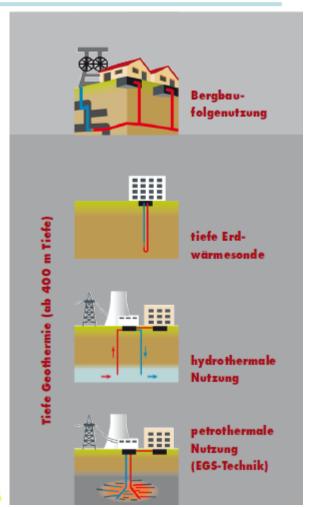
Source: Adapted from CONAES, 1980.

Source: R.A. Ristinen, J.J. Krausharr, Energy and the environment, 1999

$$1QBtu = 1055 \times 10^{15} J$$

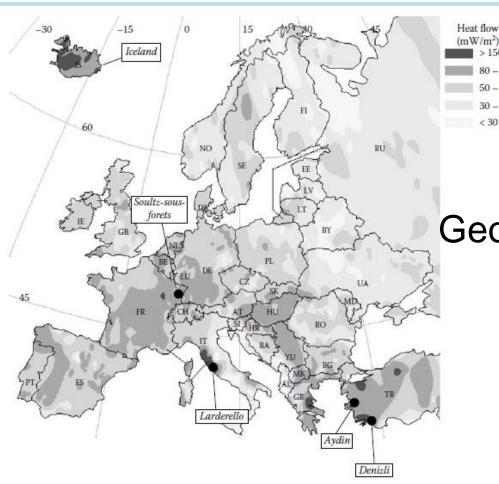
Exploration of geothermal sites

- Geological information (e.g. concentration of certain silica or certain isotopes)
- Geophysical information (e.g. e/m and seismic surveys) - applied geophysics
- Geothermal information (drilling to measure temp. grad.)
- Private homes: "geologischer Dienst NRW"


Application of geothermal energy

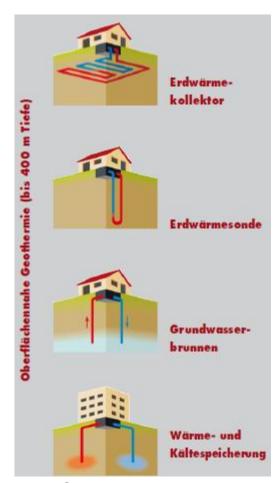
Source: erdwaerme-info.de

Usage and application of g.e. - Deep


- Direct application (industrial)
- Generation of electrical power e.g. for the grid

Source: gd.nrw.de

Usage and application of g.e. - Europe



Geothermal power plants

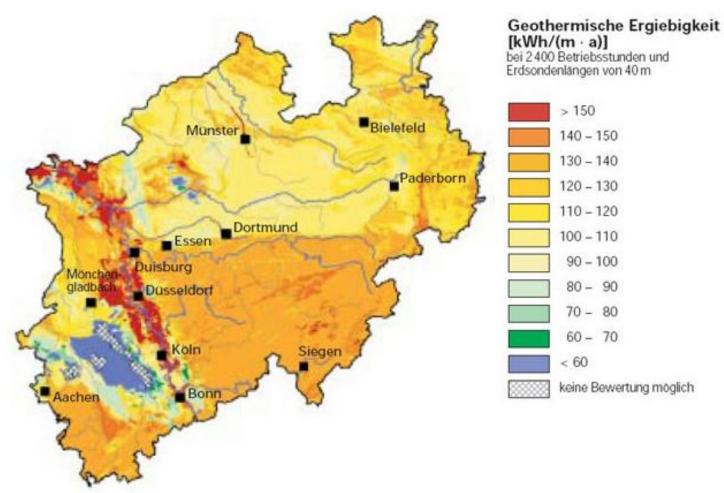
Source: W. E. Glassley, Geothermal Energy, 2010

Usage and application of g.e. – Close-to-surface

- Heating, ventilation & air conditioning (HVAC)
 - ground source heat pumps
 - open or closed systems
- Storage of heat
 - Variation of temperature on surface
 - Constant temperature in earth

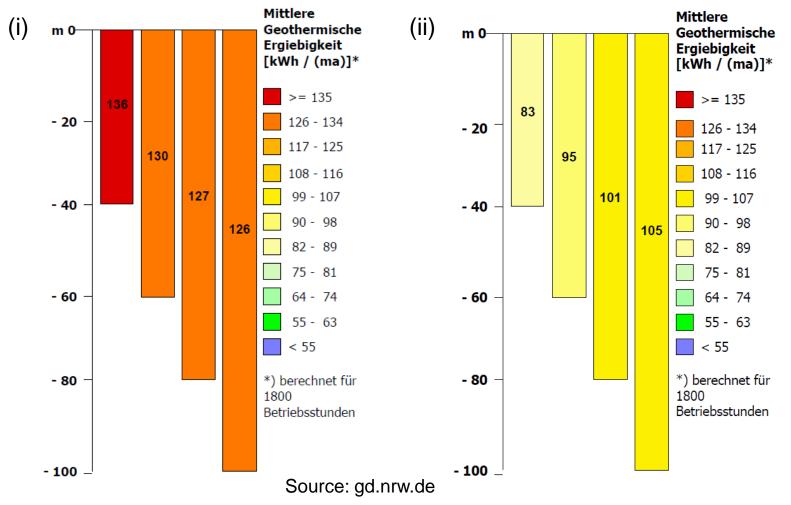
Source: gd.nrw.de

Usage and application of g.e. – Heating and cooling

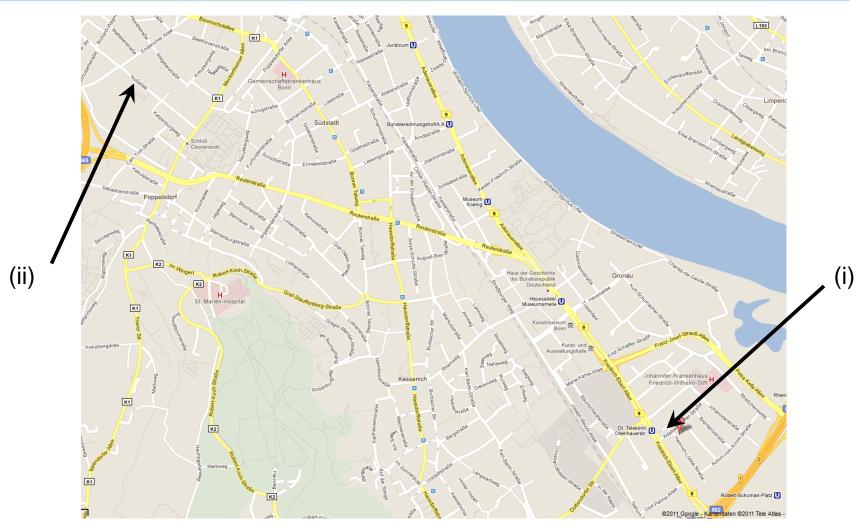

Heating:

- Cold water is pumped through temperature gradient inside earth to heat up
- Hot water used for room/floor heating or to supply warm water

Cooling:


 Cold water from close-to-surface reservoirs used for air conditioning

Geothermal energy in private homes – Exploitation (1)



Source: gd.nrw.de

Geothermal energy in private homes – Exploitation (2)

Geothermal energy in private homes – Exploitation (3)

Geothermal installations (1)

Collector:

- Closed system
- Installed below local ground frost level
- Sun radiation and rain fall heat up the ground
- Heat flow per area used to heat/cool water
- Area of installation twice as large as heated residental property

Source: ipp.mpg.de

Geothermal installations (2)

Probe:

- Installed in areas where collectors do not suffice
- Drill hole holds two from each other isolated tubes
- Circulation of water-chemical mixture (closed system)
- Expensive
- To increase efficency many tubes are combined in one hole

Source: hausbauunternehmen.info

Geothermal installations (3)

- Groundwater well
 - Groundwater is pumped up and down
 - Open system

- Water storage
 - Storage of water in different depths with different temperatures

Example of a single family home

- Calculation (after 20 years):
 - Installation costs (incl. pump):
 - Annual costs (pump):
 - Alternative heating System:
 with annual operating costs:

```
+19,200 €
+20 \times 500 € = +10,000 €
-6,830 €
-20 \times 1,200 € = -24,000 €
```

-1,630€

Risks – General (1)

- Changing integraty of the ground due to drilling
- Changing the flow of groundwater
- M=3.4 earthquake in Basel

Source: welt.de

Risks – General (2)

 Damage of filling material in drill holes due to change in environmental circumstances

Source: geothermie-nachrichten.de

Risks – Open systems

 Oaklahoma Earthquake M=5.6 due to Hydraulic Fracturing

Source: nature.com

- Pumping water into the earth to shatter sediment layers containing natural gas
- Open system in geothermal applications = pumpig water into the earth!

Summary (or Pros and Cons)

<u>Pros</u>

- Renewable
- Saves money longterm
- No direct effect on the environment

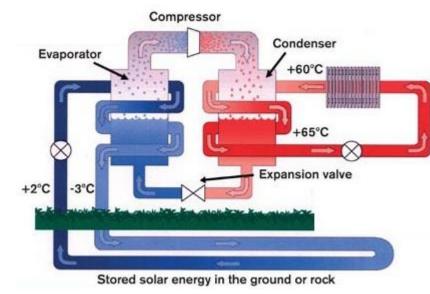
- Versatile in its application
- Almost everywhere accessable

<u>Cons</u>

- High installation costs
- Might have an effect on the earth's integraty
- No substitution for other electricity generating sources
- Strong dependance on the circumstances

Geothermal energy in private homes

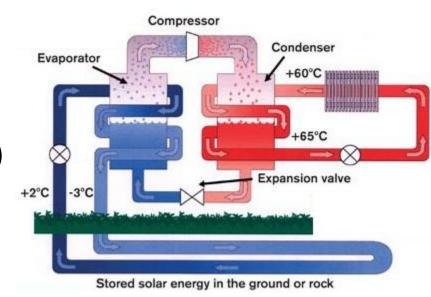
Thank you for your attention! Any questions?



See ya!

Appendix – Principle of a GSHP (1)

Basic idea:


- Inverse Carnot cycle
- Mech. work is used to transfer heat from lower
 T to higher T reservoir (e.g. 2°C to 60°C)
- Requirement
 - Fluid with low temp. of ebullition (e.g. propane)

Source: rjsheating.co.uk

Appendix – Principle of a GSHP (2)

- Fluid at high p, low T is pumped through warmer ground → heat intake, evaporation (-3°C→ +2°C)
- Gaseous fluid is compressed → condensation, heat output to heating system
- T in heating cycle increases

Source: rjsheating.co.uk

Appendix – Geothermal energy in Germany

- G.e. relative to other renewable energies(July 2011)
 - 0.027% in electricity
 - 4.1% in heating

		Endenergie 2010	Anteil am Endenergie- verbrauch		vermiedene THG-Emissionen	Endenergie 2009
		[GWh]	[0	%]	[1.000 t]	[GWh]
Stromerzeugung	Wasserkraft ¹⁾	20.630		3,4	16.390	19.059
	Windenergie	37.793		6,2	27.800	38.639
	an Land	37.619		6,2	26.672	38.602
	auf See (Offshore)	174	Anteil am Stromverbrauch ⁹⁾	0,03	128	38
	Photovoltaik	11.683		1,9	7.934	6.583
	biogene Festbrennstoffe	11.800		1,9	9.185	11.356
erze	biogene flüssige Brennstoffe	1.800	rom	0,3	1.084	2.009
Strom	Biogas	13.300	m St	2,2	7.517	10.757
	Klärgas	1.101	e il ai	0,2	824	1.057
	Deponiegas	680	Ant	0,1	509	810
	biogener Anteil des Abfalls ²⁾	4.651		0,8	3.594	4.352
	Geothermie	27,7		0,005	14	19
	Summe	103.466		17,0	74.850	94.641
	biogene Festbrennstoffe (Haushalte) 3)	72.700		5,1	21.928	62.016
	biogene Festbrennstoffe (Industrie) 4)	20.400		1,4	6.192	19.818
	biogene Festbrennstoffe (HW/HKW) 5)	7.200	8	0,5	2.062	6.222
_	biogene flüssige Brennstoffe 6)	4.100	me 1	0,3	1.135	4.583
dand	Biogas	7.600	Wär	0,5	1.192	6.507
Wärmeerzeugung	Klärgas ⁷⁾	1.086	/ für	0,1	289	1.076
	Deponiegas	360	EE	0,03	96	419
	biogener Anteil des Abfalls ²⁾	11.850	il am	0,8	3.460	10.863
	Solarthermie	5.200	Anteil am EEV für Wärme º	0,4	1.168	4.733
	tiefe Geothermie	285	· ·	0,02	18	291
	oberflächennahe Geothermie ⁸⁾	5.300		0,4	443	4.640
	Summe	136.081		9,5	37.982	121.168
<u>=</u>	Biodiesel	26.520	er-	4,3	3.639	25.972
tstoi	Pflanzenöl	636	il an coffv ch 🖑	0,1	112	1.043
Kraftstoff	Bioethanol	8.541	Anteil am Kraftstoffver- brauch 11)	1,4	1.236	6.748
	Summe	35.697	, Kr	5,8	4.987	33.763
	gesamt	275.244	EEV 12)	10.9	117.819	249.572

Source: bmu.de